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A THEORY OF CONDUCTIVITY OF COLD-WORKED COPPER

,I& Rolf ?&ndauer
,

The increase in the resistivity of copper under cold-working is
calculated. The increase is assumed to be caused by dislocations sur-
rounded by a long-range electrostatic field that.scatters the conduc-
tion electrons. The samunt of scattering is found by the method of
defamation potentials of Bardeen and Shockley. The scattering is
present in addition to’the normal thernialscattering and is regarded
as a perturbation in the Boltzmann equation. This perturbation is used
to find the incremental resistance per dislocation. From this calcu-

. lated increment in resistance and the known increase of resistivity of
, heavily cold-worked copper, the nuniberof

worked copper is found to be in agreement
the basis of stored-ener~ measurements.

e 1

&ODUC~ON

dislocations in the cold-
with the number estimated on

In the vicinity of an edge-type dislocation, ‘ametal is strained.
A Mlation of the lattice is associated with this strain; therefore the
density of electrons varies in the vicinity of the dislocation snd the
width of the filled portion of the conduction band must +SO very. In
equilibrium, however, the top of the filled portion of the conduction
band must be at the same level everywhere; so the bottom of the conduc-
tion band mnst accommodate the variation. TMs variation scat ..
electrons and is taken into account h the ensuing calculation.

The matrix elements for this scattering are calculated’by the
method of deformation potentials of Bardeen.and Shockl.ey(reference 1).
Once these matrix elements have been obtained, the rest of the calcu-
lation follows the method of Mackenzie and Sondheimer (reference 2),
which treats the scattering due to-Mslocations as a small perturbation.
in the Boltzmann equation. This treatment gives the change of resist-
ance at high temperatures, where the increment is only a‘few percent
of t<henormal

,) (reference 3)
lute zero.

i,

thermal resistance. An .e
Y

er calculation by Koebler
deals with the resistance f cold-mrked copper at abso-
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The physical
been ptiblishedin
in this report.

NM2A TN 2439
.

motivation for this calculation ~ the results have
reference 4, whereas the

ANALYSIS

In oral= to discuss electronic motion

detailed procedure is given

.

in the vicinity of U edge .
dislocation, a coordinate system must be defined. The z-as is t&en
to be the dislocation ads and the distance of a Iotit from this axis
is denoted by rt. The @e of elevation above the slip plane is

measurea by 0. The dislocation will be taken to be positive, so that
there will be an extra plane of atoms above the slip plane at 8 = a/2.
The slip direction e = O is consi~ed psndlel to the x-axis. (m-
bol.sm Mate& in appendix A.)

The density of ions varies near the dislocation. If ~ is the
densityof ions in the unstrained.m&Cl ahd if An is the increment in
the nunber of ions per’unit volume then, as shoti in appendix B,

.

where a is the slip distance, and v is Poisson*s ratio. The tidth
of the f’illeaportion of the conduction band occupied by n electrons
with efYective mass m; is

(2)

Not only n, but also m * is a function of position in the neighborhood.
of the dislocation.

When two different metals are brought into contact, an electro-
static field is set ~ so that their Fermi levels sze brou@ together.
The bottom leveM of’the two conductionhnds are then at different
energies, the difference being equal to the difference in the wiWh of
the conductionbands. In a Mslocatim, regions of the .metelsub~ect
to different strains me in contact with each other;.in the same way as
in the case of different metels it can then be e~ecked that the Fern&
levels are brought together in the vicinity of the dislocation, and that
the variation in bend width gives rise % a variation h the energy of
the low= band edge.

The method of “&formation potentials (reference1) ‘describesthe
most general method by which electronic nmtion in deformed crys- mey

J

.
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c)

be treated. Let *O be the wave function at the lower band edge. Let

5U(~) be the deviation of the lower bad edge from its normal position.

Th+m the+wave function for an electron with ener~ E is given by

A(r) Vo(r) where A satisfies

[:~@v2’’u(:lAG) =mF) ~ ‘3)

‘[

h2 1‘2+1.r&lEau)A(:)o ‘==7 %“ (4)

or

where m& is the effective mass in the undistorted lattice. Since

VOG) is t~ento be the s~e for aU wave functions inthebsnd, it
need not be considered and only the perturbation in A(?) due to the
dislocation must be evaluated.

Now, for an electron near the top of the filJ_edportion of the
conduction band, E-NJ is the width of the conduction band given by
equation (2); hence

m*

()

2/3
h2 3n

i@E@ ‘@x

Setting n = ~ -t-~ gives, to the first order in An

L-!&y’($)

(5)

(6)

The second term on the right-bend side represents a perturbation due to
the elastic distortion of the metal. Using equation (1) gives the per-
turbation as

or

.,
2 a (1-D-2P2) sin e
;%,0 z (1+ ‘t

(7)

(8)

.——... __— _.———.— — ——. . .._._._— -— .——-— —-—.
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where EB,O is the width of the filled portion of the con&ction band
in the unstrained metal. Therefore A(%) is to be,detemined from the .
equation

The unperturbed eq=tion is ,

.

(9)

521%12
F = %,0

and ~(%) is the factor that modulates w.(?), for an electron at the

top of the conduction band,in the undeformed Wtel. The probability of
transitions to states of the

must now be calculated. The
tial state

blftrepresents the scattered

type

+,+

A(?) = eik”r

new state has the same energy as the ini-.

electron traveling M a new direction.
From t~s scattering probability,.the increase‘in resistance can be
found by the method of referen&e 2.

Note that it is not necessary to - ti(r), but that it is only
the variation of n(r) that mttprs; ti(r) need not be down.

Equation (9) is the wave equatiqn that a free particle of mass %*,

inoident energy ~,0, ard charge -q obeysy If scattered by an elec-

trostatic ~otential

.-— ——.——— ———. —
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a (1-u-2u2) sin eve=—
Sfiq (~+ ‘t.

This is the potential of a line dipole located along the dislocation ‘
axis.

CALCULATION OF MATRIX EMMENTS
4

The perturbing potential in equation (9) has the

sin evr.p—
rt

where

~ = 2 ~ (1-v-2#)
%,03 2“ (lJ?)

(lo)

(n)

This potential.is assumed to exist in a rectangular box of length L
along the dislocation @s and of sxea d2 measured in a cross section

Perpentid-u to the
tions are.normalized
boundary conditions,

.3

length L of the box. The unperturbed wave func-
for this box, are selected to satisfy periodic
and are of the form

where V = Ld& and is the

The matrix element of

which vanishes unless
r

components of Z, Z*~
the dislocation axis.

. sion (13) becomes (if

*

(12)

volume of the box.

interest is

(13)

~=kzf. Let ‘&.,‘~’, and ~t represeht the

and ~, respectively, that are perpendicular to
After integration along the z-axis, eXpres-”
~ = ktz)

\ /

.— ..—.—. .— .. ..— —— .——. -.-. —



..— .—— .—= —————

.

6 I?AOATN 2439

(14)

where dA is an element of surface of ~ p~ane perpendicular to the dis-
location Ss. Let the magnitude of (~-~’) be denoted by K and

the -e it makes with the slip plane by E30. Then the matrix element

in question becomes

1 JiKrt cos (e-eo) ~ti ~

~ Ae $— dA
‘t

Setting W30 = a gi~es

1

[

iKrt Cos a

~ ~e : sin (aA-eo)

where sin (u+80)

The first term of

can be expsnded as ‘

sin a Cos eo + Cos CLsin 00

expression (17) is odd in u.
is even in a, this contributionto the integral
remainhg integrand gives

dA

(15)

(16)

(17)

Because the exponential
vanishes. The

.

Si.TIe.
P— J’eiKrt Cos u

d2 ~

Cos a da art (18)

The integration over rt from rt = O to rt = o can be performed by
assuming that K has a small positive haginmy part and then letting
this ima#mxy part approach zero. This procedur& gives for the matrix
element

2X ~ sin e.
=

iK d2

da (19)

(20)

-——— ---- . . . — —.
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Let Ot* and Ot be the angles that ~‘ and

initial wave vectors, respectively) make with the slip

c

t,

~ (final and

plane. Then

%,
Contour of

w constant ener~

--

Initisl

state Z

(21)

Now consider this transition in & space, as shown in this fig-
ure. The plane represents all the states with a given value of kz.
The curve represents a contour of constant energy. As is usual in cal-
.culations of this type, the only transitions that are importsnt are
those that almost conserv~ energy. The electron is assumed in an ini-
tial state qpecified by ~. .The quantity needed is the transition

probability to the set of states in the element dS d~. The reasoning
used here follows that given in reference 5.

If ~ 1 is the energy of the final state snd ~ is the ener~

of the -Wtial state, the prohability that ‘theelectron will be in

state kt sfter time t is

..

.

...— — —-—-— _._. —. - .——
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II 2
ak’ = ~ M(=,z’)

2 2(1- Cos pt)

%2 P2

(22) -,
.

where p = (Ek’-~)/~. NOW the n~b~ Of states per tit ~ea of t~s
~2

two-dimensional ‘~ space is 7, aud the probability of finding the

electron in dS &

bility for finding

The matrix element

4fi-d2

is therefore
~ 1%’~

2 d8 dt. The total proba-

the electron in dS is

(23)

M&,~’ ) can be.assumed con$tant over the range of
d ~ The only important contributions”to the integrand come from smsll.
values of ~ for which

where ~ is tsken to be zero
in the preceding figure. The
probability of tramition ~er
then gives

P(Z,% ) w =

(24)

on the contour of constant energy shown
quantity adually needed is the
unit time. This clifferentiation

Now this probability of transition is superposed on the trsmsition

(25)

probability arising from the thermal”vibrations of the lattice, In the
normsl metal, in the annealed state, and in the presence of m electric
field, there is a deviation g(~ from the Fermi distribution. This
deviation is limited by the thermsl scattering, the samunt of the devia-
tion determining the amount of the current. Cold working changes the
conductivity of nonporous and isotropicslly conducting metsls by only a
few percent. In the presence of the field, the dislocation, and the
thermal scattering,the detiation from the Fermi distribution is of the

form $(E) - gl(~, where gl is a small perturbation and g(~) is

the deviation that ~sts without the dislocation. Let f~@) stand

for the probabilityy that the state associated with wave vector z is
occupied according to the Femi distribution:

.

ii!

.
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fo(r) = .

,1+ ,~k) -{1/u

(26)

Let f(%) stsnd for the

The rate at which f(~)
x direction is

actual distribution, f(~) = fo(~) + g(~) - gl(~).

changes because of an electrfc field in the .

where F is the field, anL
assumed to be spheres id k
in the annealed metal will be assumed describable
time 7 (references 2 and 5) so that

where the surfaces of
space. Furthermore,

.-

1 (27)

constant ener~ are
the conduction process
by a relaxation time

T
●

(28)

In equilibria, af/?k = O“. The Date of chenge of f due to the
field as givenby equation (27), must therefore be balanced by the 6cat-
tering. The rate of scattering due to the thermal vibrations is given
by

& (f-fo) g+gl
.-— =--

~- T T T
‘(29)

,.

and the rate of scattering due to the dislocation

or

.

is
.,

ds’ (30)

(31)

.——. —. . . ..— -——. . .... .——— —. --—. _— -—.. —— ——— .-–.-.. — ——-—--–
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Ih each integral occurring b equation {31) the integration is over the

circle defined by 1~’1 = ~1, which lies in the plane kzt = kz. “,

The first titeml vanishes because f*(7) = fO(&’); the last

titegral is neglected. Both g@) and P&,=: ) are Tro~ortional to

the perturbation represented by the dislocation. The last tmtegral is
therefore of second.order in the perturbation. The total iate of
change Is

P
dfO~qF ~ gl
——— -
dkk~ J[~+~+ g(B)

1
- g(k) P(=,&) WI = o

According to equation
equation gives

gl =

where g is given by
,

(32)

(28) the first two terms cancel. The remaining

equation (28).

(33)

Substituting from equation (28), the solution for gl beoomes

J2 *O ~g (me ~ -gl~) = T
q% .

Cos et’) P(%,?) dst (34)

The value of I’(%’,,) ds t is given by eqwtion (25). substituting
this value in equation (34) gives

(35)

Now W‘ = ~ df3t’. Therefore

(36)

Emul this
density can le

change in electron distribution, the change in the current
determined:

———— ------ .— .— —._—.- ...._. —— —-
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.

The electron velooity is givenby

(

and furthermore

(37) .

(38)

4
where 7 is the angle that the k veotor maims with the dislocation -
axis. Henoe

lh order to evaluate AJ, the expression given for gl(%.) in equa-
tion (36) must be inserted in equation (40). This sub@ittiion gives

ITow ~ . k sin y. F7mthermme,
.

(42)

Henoe

J clf~ ()(COS et,. 00s qt) COS2*
AJ = -!?-d.T2eFdkdrtittittk~ SiII Y cos et~2~3 &2 .

r

(43)

.

,

–—. — _ .--— —.———.
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Only near the top of

dHferent frcm zero;
function because all
The integration over
over k, frmk=O

NACA TN 2439 .

the filled portion of the baml is df~dk appreciably

henoe it can %e considered a negative Dirac 8 ‘.
other terms M the integrand vary slowly with k.
y, from y-= O to T = m, and the integration
to k = -, give

I

(COS et - ()2 ‘%+% ‘
Cos et?) Cos —

2

()et-etI
s~z —

2
(44)

The particular value of k associated with the Fermi level is denoted

I by kf. b appendix C the value of the titegml is shown to be JC2.

Tlu&efore

(45) ,

and for the ohange in conductivity (absolute value is given)

lAa/=AJ=4d T2$q
F

(46)
53

Now if there are N dislocations in the area d2 .

IIM= 4$ T2f32kf-$

where # is the nu@er of dislocation per

Substitutingthe value of ~ given in

square centtieter.

equation (I-1)‘gives

(47)

(48)

The percentage change in conductivity is giveb by IACJI/cJ. This is
also the percentage ohange’ti resistivity, if the change is -11. , The
value of u is nq2T/~* where %* is the effective mass in the

unperturbed
.

(49)

I@tice. Hence

()

~= JAp(=4a21-v-2v2’ 2:%02% ~*y
a P 9 Irz l-g ) G

“

.

.
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13quation-(50) gives the’ohmge inresistivity for ourrent flow in
the slip direction.

If the ourreti’fluw is along the y-axis, that 1s9 8 = fi/2,a
slightly different computation applies. b equations (27), (28), W
(32), ~ must be replaced by ~. This subbtit~ion gives, instead of
equation (34),

md an equivalent replammmt in all subsequent equattons.
must be replaced by

Equation (38)

J 5 a%

@tead of equation (44), the following

and in appe~ix
gives

v

relation is then obtained:

(sti et -
M

et+et
sti ett) COSZ

C the value of the integral is shown to be 3fi2,whiah

()
2

AO=& 4 a2 l-v-2v2
P ‘zg~ &! B,02kf%*g

In the z-direction,~ong the dislocation axis, ,the conductivity
remains undanged by the dislocation.

In a material in which dislocations occur with equal probability
at all orientations, the inor-se in .resistxmoeis the average inorease
for the x, y, and z directions (referenoe 2). Henoe for an
isotropic@- cold-worked metal ‘

E the values given for copper in reference 4. =e substituted,

.—. —._.._. -.— ...—. —.-. — —..._ .. . . . —= -. ___ _.__— .—-_ ..__ __ _—. . .. . .
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Setting this result equal to the 2-percent ohange usually observed in
copper give8 . ,,

N = 5xlo~/cm2.

It is estimated (reference 6) that heavilycold-worlmi copper has N
N

6Xl# dislocatims per square centimeter. This estimate was based 2
on stored-energ measurements. The agretmerrt is excellent, indeed
considerablybetter than the assumptions involved warmnt.

The possibility that sti of the stored energy may he in the form
of screw dislocations has been neglected.. b a simple cu%ic crystal,
these dislocations are not accompanied by volme dilations and probably
cause less scattering than edge-t~ dislocations. Furthermore, it
should be taken bto account that dislocations in a face-centered cubic
metal.,such as copper, occur in the form of half-dislocations.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,

Cleveland, Ohio. .
.
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SYMJ301S

The following -OIS are used in this report:

solution of effectiw mass equation in unieformed orystal

probab~ity that transition from ? to F? has ocourred

slip distanoe

width of box (along z-axis) used in quantizing electron
states

energy of eleotron in stationsry state in perturbed
pericXlicpotential.

width of filled portion of conduction bazxl,function of
gosition in vioinity of dislocation

,width of filled portion of corduotion band in unstrained
mew

energies of final and initial.state, respectively

electria field prduci.ng current flow

probability that state ~ is oocupied accomilng to Fermi
distribution

~obability that state ? is occupied in the presence of
electric field and dislocation

deviation fYa Fermi distribution in nmual undistorted
lattioe, in the presence of an electric field

deviation frcm Fermi distribution in the presenoe of dis-
location ad eleotrio field

Planck~s co~-

h/2z ~

decrement h current due to dislocation

wave vector of electron in initial state

. ..-— . ..---— ———— -————-.-——— -—— ——— — — - ..._. — .—— ——-——
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wave’vector of eleotron in

x- of ? at top of

finalstate

filled portton

components of respectim veotor8
to disiooation axis

ccmponetis of respective veotcuw

lengthof box (alq z-axis)
states

effeotim eleotronio mass in

that are

‘NAC.ATN2439
●

,/
of conduction

perpetilaular

ELOW aiShOdiOn aXiS

used in quantizing

effeotive eleoimm$o mass, funotion of position
of dislocation

+
matrix element for tmnsition from @ate k to

due to perturbation by dislocation ,

nuniberof dislocations

nuliberof’ais100atiO~

%’h

orossing area az

per square centimeter

eleotron . 4
N
ml
N

h Vidnity

-b
state k?

“

nmnber of ionE per unit volums h ti~tia rmtal

ohmge in ‘mmiber of ions per unit volme am to strain,
a funotion of position in vioinity of dtslooation

probability wr unit time that a tmnsition &m 3 to
r~ Owxms

mgdtie of electronic chemge

position rector defining looation with respect to an origin
on dislocation @s

oomponeti of ~ that is perpentlie. to dislocation axis

4
VeMahle of intqpatfon in ~ spaoe, dS is along a
conto’irof constant energy

●

absohrte temperature

time .

M

–- — ——
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w(;)

,3
.

deviation of lower land edge from level at which it is
w~n far away from dislocation ..

l/2(et-1-et’) ‘u

-V

Ve

l/2(et - et’)

eleotrostatio po~tiial whose scattering effect is
equivalent tb’dislocation

perturbing potential due to dislocation in wave equation

value of eleotronwlooity mmpo-mnts

coordinates with z-axis along dislocation and
slip direotion )

expmtation

rehmglar
x-axis in

X,y,z

e- e.a

L.

.

that ~ vector makes with dislocation axis

l&

of elevation above slip plane, measured from

Y angle

Fermi

angle ais-e
looation axis

angle “~-~~ * lE3kt3Swith ‘Slip@?M

angles that ~‘ and %, respectively, make with the
x-axis

.

magnitude of %-% ~

~2 perpefii”~
rectangle of area

Poissonts ratio

to dislocation axis

variable of integration in ~ spaoe; d~ is perpetiicular

to a oontoy of constqnt energy

resist iv-i-byof normal metalP
‘

Ap ‘ ohange in resistivity ~used by severe cold working

Gonauotivity of normal metal

change in conductivity oauaed by severe oold workingAff

.—..——. .— .—-——-- --—— --—-———-—-—— —.--—,------- . -. s-.=-....-..—— ~.—- .. ... ..
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relemtion time for oorihothn

volm element in 1? spbe

wave function for eleotron at

.

~ooetw

NACA TN 2439

-bottomof C)olihlot ion

“
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APPENDIXB

been

[

CHAIGEOF ION DEIU31TYNMR A DJBLOW?ION

T&I stress diatribtrtionsurrotiingan edge-t~ dislocation has
given in reference 7 as

p~. - D(sin 36 + 3 sin e)/2r

P22 = D(sfi .36- Sti 0)/2r

P~, =D(oos 3e + 00s 0)/Zr

Pw . -D(4v sin e)/2r (Bl)

P~=P23=0

where D = &#2fi(@,-G beiE@ the S~I?lOdUhS, @ V is pO~SSOngS
ratio ● Now tbe stmin tensor Sij has diagonaltem given by

where p is the

the unit tenscw.

Si,=#I~-~ c) - (B,)

presswe, or the traoe of tbe stress tensor, and e is

The dilation is E~ Sti and is therefore given by

Stibstittiingf%om equation‘(B1)

z~ s~i=-

1 ()=1-p-
2G

32
1+.V

in equation (B3)

(B3)

gives

The obange in ionio dexmim An/n’ is the negattve o? equation (B4) W
is given by

An_ = & (1-P-2V2) sin e
n (1-?22) r

.,

——. .—... ——— .—-—— —- -—.- —
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!1’ ~~
..

YI Ic
(00s et - .()2 %+% ‘

00s etf) 008 ~

de% dets 090 et (cl) ‘

,4-X

is to be evaluated. Let

The integral given

H
II U=li-v

2

=0 U=v-1-c

A (et - ett) s v
.2”

then beccmes

[
au dv COS2 (U+v) 1-OOS(Wv)~oS (U-vj *

sin ‘v

(C2)

(C3)

Jv=-0=-IPv

factor 2 represents the Jacobian of the transformtion.

(C4)

The rangeThe
of integration is the square shown in the following figure:d

b

.

--
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.

The first integral rangea over the dashed triemgle; ‘tieseaond integril
over the remaining portion of the square. The terms in brackets oan
also be written

.
[
2sin2usin2v- 12cof3ucos Tsinusin T (C5)

The ftist term of expression (C5) is even in v; the seoonl is cold;

00s2 u/sin2 v is even in v. Therefore the fM term of expres-
sion (C5)produoescontributionsof Mm signand e~ualmagnitudein
the two titegralsof equation“{C4).The secotitezm”of expression(C5)
prahzoescontributionsthat camel. Thereforeexpression(C4)reduoesto.

H
V4C Ud-v

8 sfi2 u ~os2 u du d~ ‘(C6).

T=O U=’v-x

The integml over u is a standard integral, listed in tables of
integrat Ion. This inte~tion leaves -

‘J(at @n4v+2Tc-
)

2V W

V=o

=$”sb4v+2m-v2

= zgz - 7P s 1#

whioh iS the value of (Cl).

Yc

o

.–

(C7)

----- .-— L .— -—..-. . ..—. . . ..— --.-—.—— .—. —.—— —.—. .—. — — —
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The integral ..-

lcfc

JJ -T(-YC

is 133J30to ‘beevaluated. The tremsfonwxtion given hy equations (C!2)
and (C3) must be used again and gives

uIX U=li-v

2
[

du dv sin2 (U+V) -
1

00s2 U
Sin (U+v) E3in (u-v —+

sin2 v
T4 U=v-ti

2jv=Jefi-v.u.vF~2(u+v)-s~(u+v)sfi(
The terms in the brackets oan be written

(2ooBGsin G+2sinucos )voosuainv

“As h expression (Cl), only the term in v contributes,

L!
II U=lc-v

8
V=o U=-v-lc

even

4Cos

After integration over u, the illt~l iS

ududv.

=6Yrv -

6v- 4 sir?v )-+n4vdv

I
11

3+ = 61C2- 33’C2= 3Jt2
o

(09)

(Clo) ,

lewlllg

(Cll)

(C12)

which is the value of expression (C8).
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